Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy.

نویسندگان

  • Bo Sun
  • Rong Huo
  • Yue Sheng
  • Yue Li
  • Xin Xie
  • Chang Chen
  • Hui-Bin Liu
  • Na Li
  • Cheng-Bo Li
  • Wen-Ting Guo
  • Jiu-Xin Zhu
  • Bao-Feng Yang
  • De-Li Dong
چکیده

Identifying the key factor mediating pathological cardiac hypertrophy is critically important for developing the strategy to protect against heart failure. Bone morphogenetic protein-4 (BMP4) is a mechanosensitive and proinflammatory gene. In this study, we investigated the role of BMP4 in cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. The in vivo pathological cardiac hypertrophy models were induced by pressure-overload and angiotensin (Ang) II constant infusion in mice, and the in vitro model was induced by Ang II exposure to cultured cardiomyocytes. The expression of BMP4 increased in pressure overload, Ang II constant infusion-induced pathological cardiac hypertrophy, but not in swimming exercise-induced physiological cardiac hypertrophy in mice. BMP4 expression also increased in Ang II-induced cardiomyocyte hypertrophy in vitro. In turn, BMP4 induced cardiomyocyte hypertrophy, apoptosis, and cardiac fibrosis, and these pathological consequences were inhibited by the treatment with BMP4 inhibitors noggin and DMH1. Moreover, Ang II-induced cardiomyocyte hypertrophy was inhibited by BMP4 inhibitors. The underlying mechanism that BMP4-induced cardiomyocyte hypertrophy and apoptosis was through increasing NADPH oxidase 4 expression and reactive oxygen species-dependent pathways. Lentivirus-mediated overexpression of BMP4 recapitulated hypertrophy and apoptosis in cultured cardiomyocytes. BMP4 inhibitor DMH1 inhibited pressure overload-induced cardiac hypertrophy in mice in vivo. The plasma BMP4 level of heart failure patients was increased compared with that of subjects without heart failure. In summary, we conclude that BMP4 is a mediator and novel therapeutic target for pathological cardiac hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats

Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...

متن کامل

Carvacrol Ameliorates Pathological Cardiac Hypertrophy in Both In-vivo and In-vitro Models

Hypertension-induced left ventricular hypertrophy is the most important risk factor for heart failure. This study aimed at investigating the effects of monoterpenoid phenol, carvacrol, on myocardial hypertrophy using both in-vivo and in-vitro models. Male Wistar rats were divided into the control (Ctl), un-treated hypertrophy (H), and carvacrol-treated hypertrophy gro...

متن کامل

Carvacrol Ameliorates Pathological Cardiac Hypertrophy in Both In-vivo and In-vitro Models

Hypertension-induced left ventricular hypertrophy is the most important risk factor for heart failure. This study aimed at investigating the effects of monoterpenoid phenol, carvacrol, on myocardial hypertrophy using both in-vivo and in-vitro models. Male Wistar rats were divided into the control (Ctl), un-treated hypertrophy (H), and carvacrol-treated hypertrophy gro...

متن کامل

Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats

Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-ag...

متن کامل

BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2013